"Standardized Designs for Third Generation Ammonia-on-Demand (AODTM) at AEP's Amos and Mountaineer Plants"

Hamilton G. Walker, Jr.
Joseph J. Titus
Environmental Elements Corporation
Baltimore, Maryland

Prototype Installation on 580 MW Mirant Canal Plant 2000 Ozone Season

- First commercial operation of AOD technology installed on a utility SCR
- Performance tests for maximum and minimum production rate, ramp rate, load following and automatic operation passed with no difficulty
- Hydrolyzer performance confirmed design calculations for reaction kinetics
- Instrumentation and control issues successfully worked out

First Large Scale AOD Installation at AEP's 2,600 MW Gavin Plant

- Process design duplicated Canal due to short project schedule
- Large plant required separation of urea unloading, solution preparation locations
- Storage of urea solution used to isolate hydrolysis process from maintenance of urea solution and handling system
- 3 50% hydrolysis trains used to insure high availability of the ammonia stream

AEP's Gavin Station

Train B Hydrolyzer

AODTM System Process Improvements Developed from Gavin Station Experience

Liquid Carryover Redesigned internal separators

Redesigned interstage baffles

Improved mist eliminator

Improved Instrumentation Total I/O count reduced

Redesigned pressure transmitters

Improved level measurement

Improved Urea Handling Truck and rail delivery of dry urea

Improved urea mixing

Higher capacity solution storage

Temperature control on recycle tank

Redesigned Components Feed pumps replaced with new design

Process simplified

Design Objectives for Third Generation AOD Systems in AEP Plants

- . Reduce steps in dry urea handling and storage
- Long term storage of reagent as solution
- Minimize number of process skids
- Increase process reliability
- . Simplify overall installation
- . Reduce capital and installation cost

Design Changes Implemented at Mountaineer

- Elimination of rail delivery, dry urea storage
- . Dry urea to be delivered in open dump trucks
- . High speed, high capacity dissolving tanks
- . 2 100% process trains
- Incorporation of hydrolyzer design improvements made at Gavin

AOD Installation - Mountaineer Plant

AOD System Design at Mountaineer

Unloading system accommodates dump truck delivery of dry urea

- More tolerant of lumps and agglomerates
- Rapid unloading
- Avoids dry storage
- Eliminates specialty pneumatic transfer vehicles

High Speed, High Capacity Dissolving Tanks

- High throughput of urea
- Proprietary mixing technology
- More precise control of urea solution concentration
- Minimizes time urea remains as a solid

AOD Installation - Mountaineer Plant

AOD System Design at Mountaineer

Large urea solution and recycle storage tanks

- Provides 5 days of solution at design ammonia capacity
- External heating of recycle tank
- Allows on-line maintenance of unloading, mixing systems
- Uniform concentration means smoother operation of hydrolyzer

AOD Installation - Mountaineer Plant

AOD System Design at Mountaineer

2 x 100% capacity hydrolyzers

- Simpler control system
- More rapid response
- Reduced capital and installation cost

Hydrolyzer Design Improvements

- Better internal gas/liquid separation
- Improved sparge steam design
- Redesigned pressure and level measurement instruments

Preliminary Operating Results from Mountaineer Startup

- Equipment delivered to site February, 2002
- Installation substantially complete April 9, 2002
- First ammonia production April 30, 2002
- Achieved NOx reduction target May 1, 2002
- Dry urea handling system started up May 7, 2002
- Currently in full operation with 90% NOx removal

NOx Reductions During Variable Load

Hydrolyzer Operating Conditions

AOD System Standard Designs

4,000 lbs/hr ammonia 8 Units at Gavin, Amos and Cardinal 2,000 lbs/hr 12 units at Mountaineer, Cardinal, Big Sandy, Kyger Creek and Clifty Creek

1,000 lbs/hr
600 lbs/hr
1 unit at Mirant Canal Station
250 lbs/hr

Conclusions

- Design improvements resulting from operating experience at Canal and Gavin have been incorporated into standard designs applied to Amos and Mountaineer
- These improvements have resulted in reduced capital and installation costs for the AOD systems at AEP's Mountaineer and Amos plants
- The new approach to urea handling and storage resulted in a simpler system with expected reduced operating and maintenance costs
- Design improvements have already proven effective in simpler startup with fewer problems, smoother operation and fewer operating problems

